

anion exchange brine treatment

Elisabeth Vaudevire Interreg workshop 21-09-2016

take home message

- anion exchange brine sometimes can not be discharged because of it's composition treatment necessary
- in these cases separation and reuse of compounds could be seen as an opportunity to increase sustainability and create circular economy at affordable costs.
- value of humic substances depends on its proven efficiency, quantity required and purity
- ED was found performing better than NF for separation of NaCl
- separation of Na2SO4 from humic substances is more challenging

anion exchange contaminant removal

main driver to apply AIEX: increased removal of DOC to reduce DBP formation

- removal by adsorption onto resin beads
- organic matter
 - dissolved fraction specifically anionic species with carboxylic groups (MW between 500 and 1500 Da)
- inorganic matter
 - sulphate, nitrate usually referred to as competitor to NOM adsorption
 - trace metal anions

Fulvio	c acid	Humi	c acid	Humir
Crenic acid	Aprocrenic acid	Brown humic acids	Grey humic acids	-
Light yellow	Yellow brown	Dark brown	Grey black	Black

anion exchange brine generation

previously adsorbed compounds released in NaCl solution during resin regeneration

SOUTH WEST WATER

- desorption in concentrated NaCl solution
 - high conductivities
- organic matter
 - colorful
 - can not be discharged in surface water bodies
- inorganic matter

Interreg

DOC2C's

2 Seas Mers Zeeën

- sulphate creates corrosion in pipes and sewage treatments
- nitrate causes eutrophication in water bodies (infiltration or discharge)

anion exchange brine generation

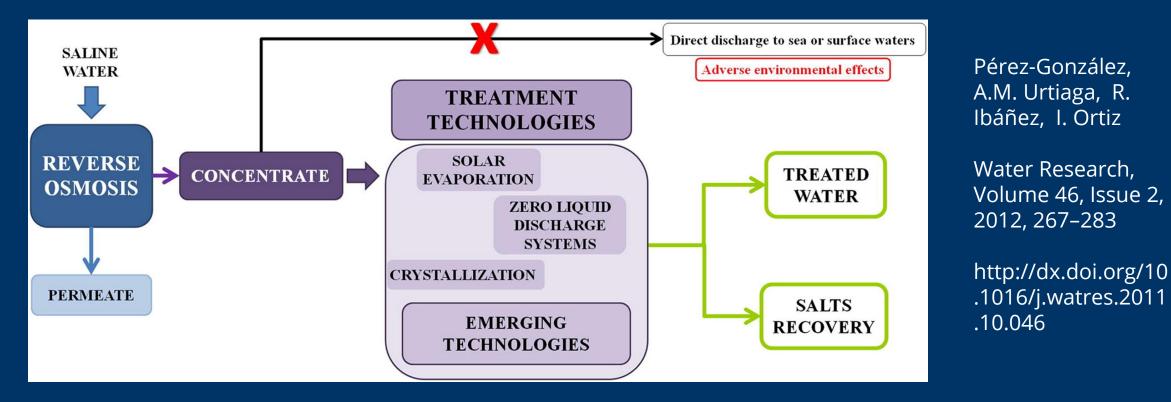
a source of potential by-products

sulphate in glass industry

- desorption in concentrated NaCl solution
 - reused in anion exchange process
- organic matter
 - humic acids
 - fulvic acids

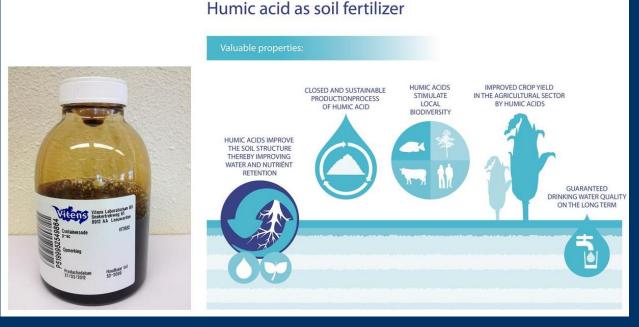
inorganic matter

- with applications in:
- agriculture
- -livestock feed
- pharmaceuticals
- food supplements



state of the art brine treatment

mastered in RO brine treatment with 2 goals: volume reduction & water recovery



a source of potential by products

state of the art resource recovery?

- anion exchange brine contains two resources:
 - NaCl for reuse
 - Humic substances for various applications
- state of the art separation & recovery of resources
 - NF for NaCl recovery: applied
 - other technologies : research (lab studies)
 - diafiltration: full scale at Vitens (ground water)

if brine treatment is considered too expensive – can the production of by products reduce the bill?
this research looks at the technical aspects of compounds separation in a view of by products creation

research goals

technologies & applications

investigate the mass separation of compounds:

organic / inorganic – monovalent / multivalent

valence

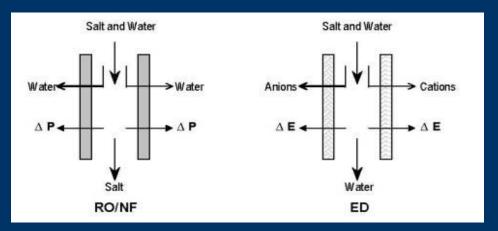
- seize
- crystallization properties
- Application in processes long term operation
- lab & pilot work
- test the economical / environmental model of by product creation

collaboration with specialized institute for application of humic substances crops growth trials (WUR)

livestock feed trials (Denkavit) market studies and value of HS (aqua minerals)

NaCl recovery for reuse in resin regeneration

a sustainability issue


"the individuals impact contributors in life cycle inventory (I.e. electricity requirements, resins requirements, brine waste production, transport requirements, and salt requirements)."

NaCl recovery for reuse in resin regeneration

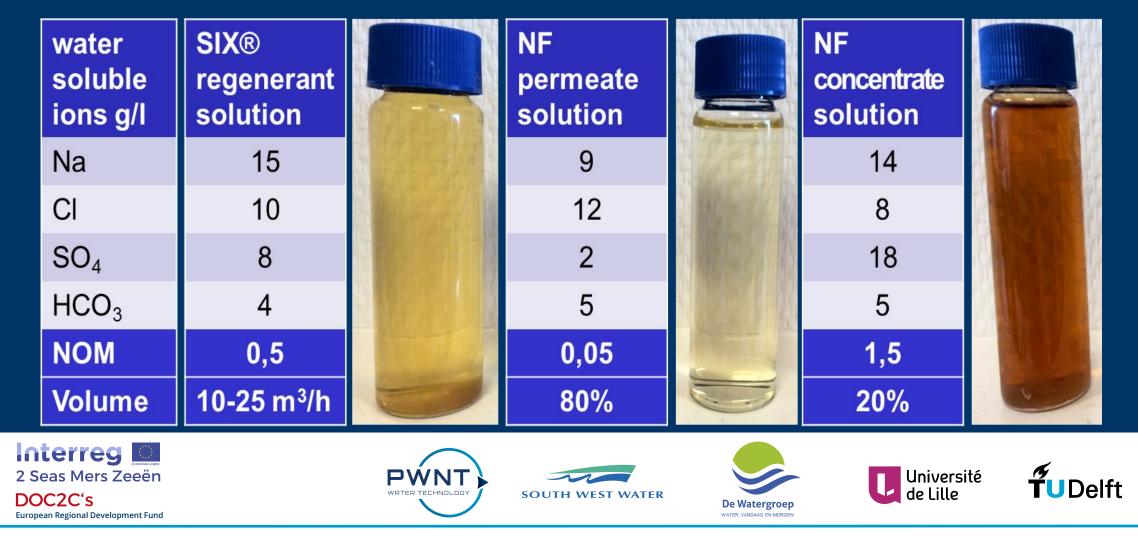
technical challenge and possible technologies

- technical challenge is the separation of monovalent ions from multivalent and organics
- nanofiltration
 - under pressure gradient
 - seize separation through pores (few nm in seize)

- electrodialysis
 - under electric potential gradient
 - extra layer increases perm selectivity for monovalent
 - highly cross linked (seize repulsion),
 - charged layer same sign as passing ion (charge repulsion)
 - hydrophobic layer (hydration repulsion)

seize separation through nanofiltration

- pilot capacity: 80L/h
- optimization with frequent air flush
- membrane area: 7,6m²
- flux: 6,6L/m²/h 80g Cl/h
- (salt) recovery goal: 80%,





nanofiltration performances

fouling & clogging after 4 years un-continious operation

charge separation with electrodialysis and monoselective membranes

- pilot capacity 40L/h
- constant voltage 45V
- optimization with reversal
- membrane area: 3m²
- salt transfer: 100g Cl/h
- salt recovery 85%

permselectivity

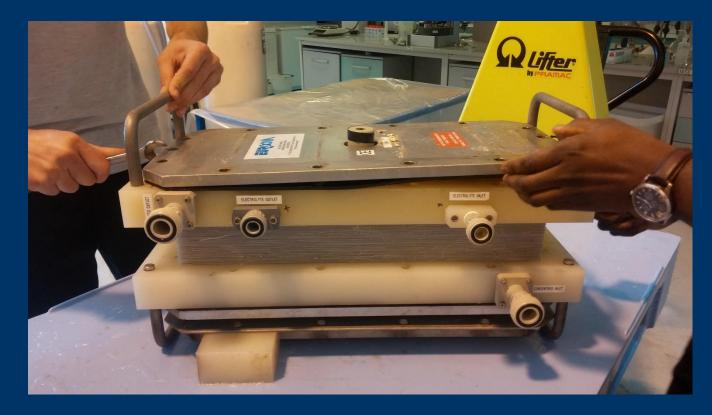
		Chloride g/L	Bicarbonate g/L	Sodium g/L	TOC mg/L	Sulfate g/L	Conductivity mS/cm
3-6-16	Raw Diluate Feed	4	3	8	300	4	25
3-0-10	Concentrate Final	32	11	26	10	0,4	84
9-6-16	Raw Diluate Feed	5	3	9	400	5	25
	Concentrate Final	32	12	30	17	0,5	84
23-6-19	Raw Diluate Feed	5	3	9	300	5	25
23-0-19	Concentrate Final	35	9	29	10	0,3	84

permselectivity

		Chloride g/L	Bicarbonate g/L	Sodium g/L	TOC mg/L	Sulfate g/L	Conductivity mS/cm
3-6-16	Raw Diluate Feed	4	3	8	300	4	25
5-0-10	Concentrate Final	32	11	26	10	0,4	84
9-6-16	Raw Diluate Feed	5	3	9	400	5	25
9-0-10	Concentrate Final	32	12	30	17	0,5	84
23-6-19	Raw Diluate Feed	5	3	9	300	5	25
	Concentrate Final	35	9	29	10	0,3	84

permselectivity

		Chloride g/L	Bicarbonate g/L	Sodium g/L	TOC mg/L	Sulfate g/L	Conductivity mS/cm
3-6-16	Raw Diluate Feed	4	3	8	300	4	25
5-0-10	Concentrate Final	32	11	26	10	0,4	84
9-6-16	Raw Diluate Feed	5	3	9	400	5	25
9-0-10	Concentrate Final	32	12	30	17	0,5	84
23-6-19	Raw Diluate Feed	5	3	9	300	5	25
23-0-19	Concentrate Final	35	9	29	10	0,3	84


SOUTH WEST WATER

stack inspection after 870h of operation

stack inspection after 870h of operation

assessment electrodialysis and nanofiltration

- sulphate passage: 20% with NF 1,25% with ED
- TOC passage: 8% with NF 0,4% with ED
- NaCl solution: not concentrated with NF 12g/L concentrated to 30g/L Cl- with ED
- salt transfer : 80g/L Cl with NF 100g/L Cl with ED
- long term operation: to be directly compared
- overall 30% NaCl recovery
- energy consumption per m³ of brine: 9,3 kWh for electrodialysis (+4 kWh for denitrification)

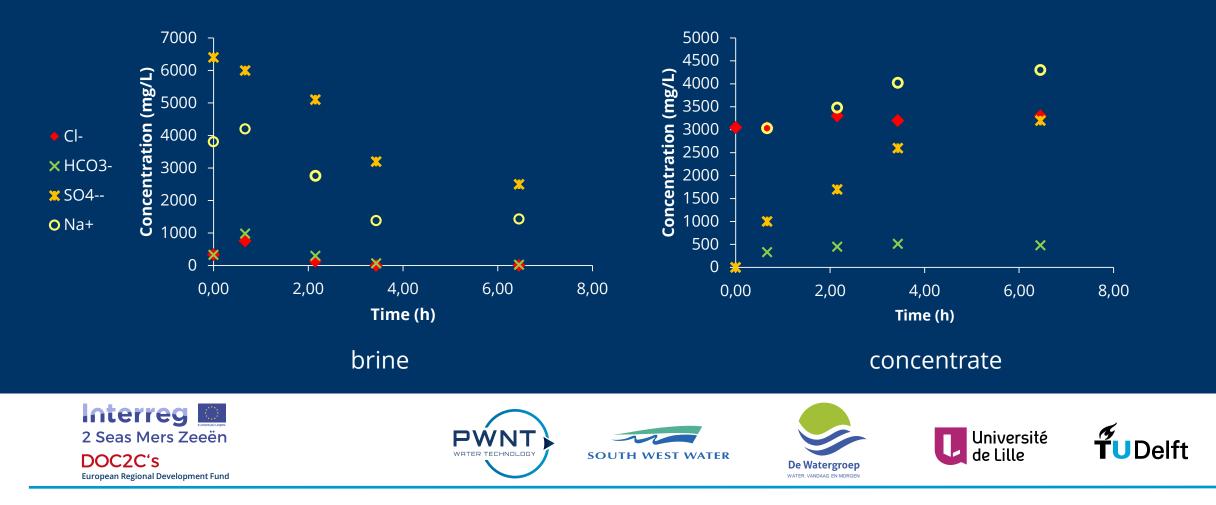
ion	% passage
Cl-	80-90%
HCO ₃	60-70%
Na+	50-65%
SO4 ²⁻	<1%

results obtained in batch of 200L with a stack of 25 cells – 0,1 m2/cell PC MVA/ PC MVK

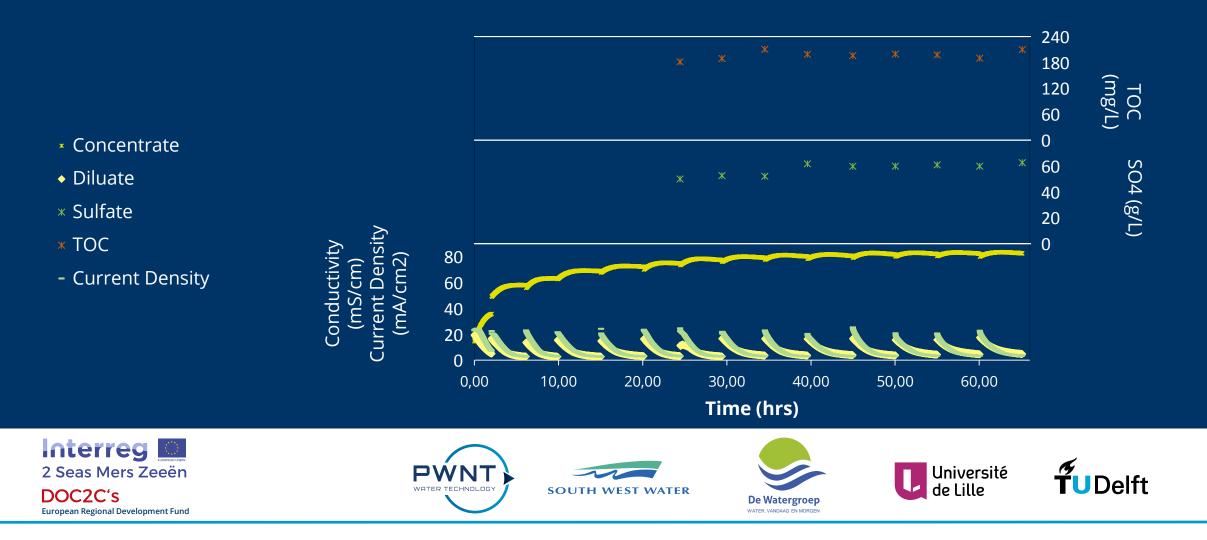
 multivalent ions separation from organics for products creation:

- organics (humic substances) for agriculture and/ or animal feed
- Na₂SO₄ used in glass industry

trials with electrodialysis and non selective membranes



why the challenges are greater for electrodialysis


- sulphate are large and very hydrated ions
 - membrane choice to extract them not too cross linked retention of organics may be lower
 - carries water molecules during ion exchange
- osmosis force
 - diluate 15→3mS/cm
 - concentrate : up to 80mS/cm

batch trials non selective electrodialysis

limitations non-selective separation

•non-selective separation

average exchange per batch

Average transfer per batch				
Sulphate	TOC	Water		
640g	3,4g	15L		
43g/L	188mg/L			

- concentrate has a upper limit at 70mS/cm and 43mg/L SO₄
- tradeoff between sulfate passage and NOM contamination
- need for optimization or alternative technology?

crystallization as an alternative

- at evaporation temperature, solubility limit of Na_2SO_4 is 30g $Na_2SO_4/100g$ water
- concentrating further CF 40 leads to crystal formation removable with DVR
- crystal salts preferred by glass industry
- humics gain in potential application as they are further concentrated

• energy requirements 25 – 35kWh.m³ brine

further define the product

0,05% humics

desalted

irrigation water feed - drinking water

1,2% humics

desalted dewatered agriculture

>20% humics

desalted more dewatered feed - supplement

humic substances properties in agriculture

- fulvic acids carry Ca, Mg, P, Fe, Zn and Cu into the plant (chelating agent and metal carrier)
- humic acids improve rooting capacity
- important parameters for growth effect:

- он auxin like molecules used by plants as growth hormon detected by gas chromatography mass spectrometry (GC MS)
 - carboxilic group have the ability bound with cations; binding with metals brings several COO- close together and is responsible for the 3D structure of the molecule

tests on brine

agricultural / horticultural purpose

• brine composition for trial after extensive desalination :

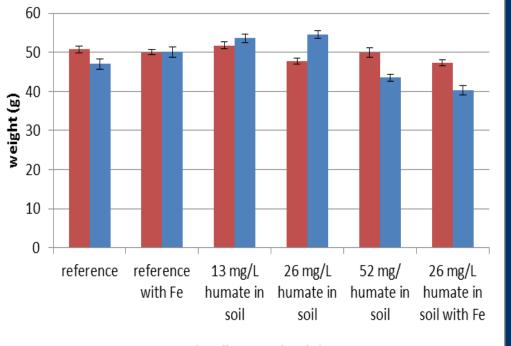
NOM	1g/L
Na	2g/L
Cl	0,02g/L
SO ₄	3g/L

• set up:

- 2 types of soil
- 3 concentration of brine 13, 26, 52 mg/L
- one reference no addition
- one reference 5µmole/L iron chelate
- one treatment 26mg/l + 5µmole ion chelate

Figure 3.1 The start of the experiment on 13th Ma

SOUTH WEST WATER



tests on brine

agricultural / horticultural purpose

sandy soil sand and clay

26mg/L ref 13mg/L26mg/L52mg/lbrine + ref +iron brine brine brine iron

sandy

soil

clay

soil

tests on brine

- low concentration of brine increased growth about 10% over the reference and over the addition of iron chelate.
- possible toxic effect of sodium at 52 g decreased growth about 10%- further desalination needed
- because of Na acceptance limit of the soil tests were not possible at higher humic concentration
- need for further desalination
- alternative application in animal feed, instead of anti microbial growth promoter

overview benefice brine treatment

feature	benefits
NaCl recovery	 reduce chemical costs reduce NaCl production and transportation (positive impact on LCA)
zero discharge	 no transporation of waste no discharge permit / fees
humic substances recovery as fertilizers	 create circular economy benefits from sale answer the need of the local horticultural industry

take home message

- anion exchange brine sometimes can not be discharged because of it's composition treatment necessary
- in these cases separation and reuse of compounds could be seen as an opportunity to increase sustainability and create circular economy at affordable costs.
- value of humic substances depends on its proven efficiency, quantity required and purity
- ED was found performing better than NF for separation of NaCl
- separation of Na₂SO₄ from humic substances is more challenging

