

Organic Matter: new challenges on treatment processes

Literature and observers

Observers

Questionnaire

- Drinking water treatment companies
- Waste disposal company

Introduction

Challenges: OM fractions

- Variety of OM compounds
- Problems in treatment processes
- Variations in OM concentration and composition
- Different treatment steps

Outline

CHARACTERISATION

Of OM

PROBLEMS

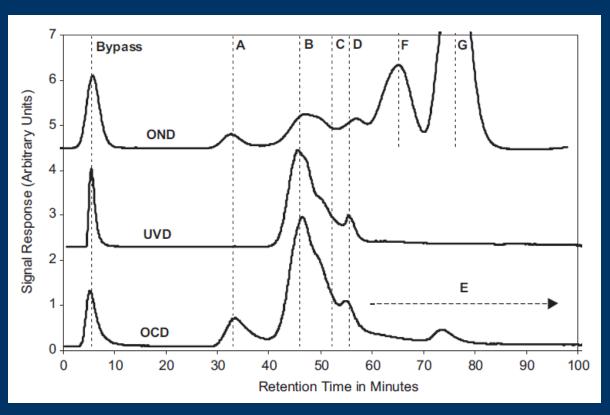
For different OM fractions

VARIATION

In time and source

TREATMENT

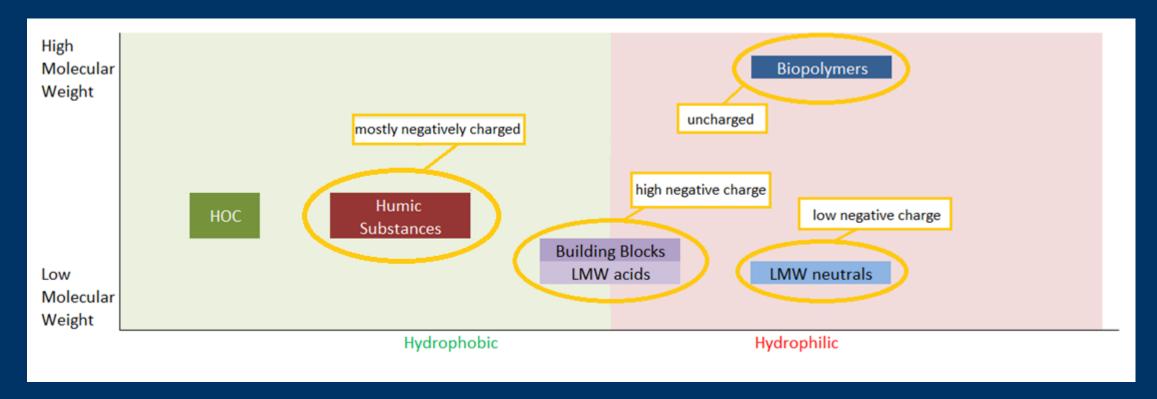
Overview of techniques



Fractions

- Hydrophobic/Hydrophilic
- Charge
- Size, UV absorbance, C and N content

LC-OCD-OND, example: Huber et al., 2011



Fractions: Hydrophobicity, Charge, Size

Hydrophobic OM

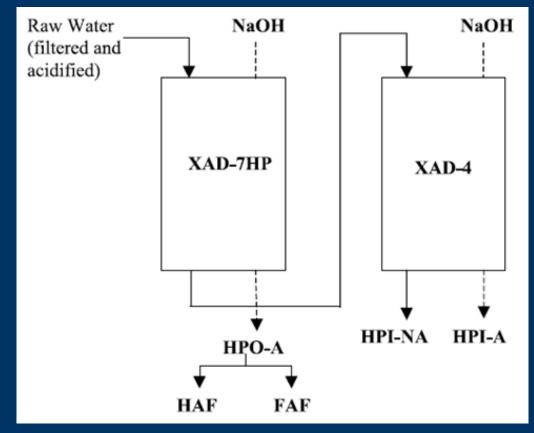
- Half or more of aquatic OM
- Detected by UV measurements
- Removed by coagulation
- Low Molecular Weight and Hydrophilic OM: difficult detection and removal

Biodegradable and refractory OM

- Organisms: remove biodegradable OM or change its compositions
- Problems with fractionation:
 - Missing information on biological transformation
 - Low concentrations
- Biodegradable OM measurement
 - Biodegradable Dissolved Organic Carbon (BDOC): DOC consumption test
 - Assimilable Organic Carbon (AOC): biomass growth

Origin

OM origin	Source
Allochthonous	 Vegetation, vegetative debris
	 Hydrology, geology, leaching
Autochthonous	 Algae: photosynthetic activity and decay
	 AOM, phytoplankton, macrophytes, excellular or
	intracellular OM, macromolecules, cell fragments
Effluent organic matter	 OM not removed during wastewater treatment
(EfOM)	 Soluble microbial products from biological
Baghoth, 2012	treatment



Observers: Measurements

- Total / Dissolved Organic Carbon (TOC / DOC)
- UV254, Color
- Disinfection By-Products:
 - Trihalomethanes (THMs)
 - Haloacetic Acids (HAAs)
- BDOC, AOC
- XAD resin fractionation

Sharp et al., 2006

Observers: Measurements for specific research questions

- Dissolved Organic Nitrogen (DON)
- 3D Fluorescence (specific emission and excitation wave lengths)
- Size Exclusion Chromatography (e.g. LC-OCD)
- Molecule structure: Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS)

Outline

CHARACTERISATION

Of OM

PROBLEMS

For different OM fractions

VARIATION

In time and source

TREATMENT

Overview of techniques

Process

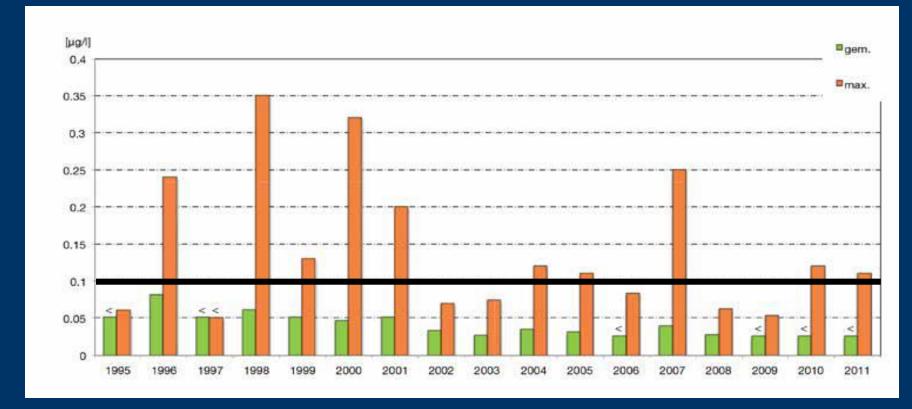
- Competition for adsorption surface
- Membrane fouling
- Biological instability
- Disinfection By-Products (DBPs)

Competition for adsorption surface on Activated Carbon: OM and micropollutants

Higher PAC dosage, frequent regeneration GAC

Problematic OM fraction	Cause
Lower Molecular Weight Hydrophobic	Adsorption competition on AC
Higher Molecular Weight Hydrophobic	Possible cause for pore blockage in GAC

Hu, 2006



Adsorption competition on Activated Carbon: OM and micropollutants

Example

Isoproturon (Rhine) and 98/83/EC Adapted from ICBR, 2013

Membrane Fouling

• Shorter lifetime, increase operational costs, permeability reduction

Problematic OM fraction	Cause
Hydrophobic	Association: irreversible fouling
High Molecular Weight, Hydrophilic _{eg Metsamuuronen e} (Biopolymers)	Association: reversible fouling

• Operational parameters, types of membranes, raw water

Biological instability

Bacteria growth and biofilm formation

Problematic OM fraction	Cause
Hydrophilic	Major contributor biodegradable OM
Low Molecular Weight (<1kDa), Low Molecular Weight Acids	Mainly related to AOC
Humic Substances	Promote biofilm growth in distribution systems

e.g. Baghoth, 2012, Tran et al., 2015, Metsämuuronen et al., 2014

Disinfection By-Products

Problematic OM fraction	Cause
High Molecular Weight, Hydrophobic	Main DBPs precursor (reactivity with Chlorine)
Hydrophilic	Main precursor of toxic bromated DBPs
Low Molecular Weight	Important contributor to DBPs

e.g. Metcalf et al., 2015, Matilainen and Sillanpää, 2010

Disinfection By-Products: approaches

- Less disinfectant
- Change disinfection method
- Removal of OM precursors

"If you're not part of the solution you're part of the precipitate"

- Some wise person

Video

Outline

CHARACTERISATION

Of OM

PROBLEMS

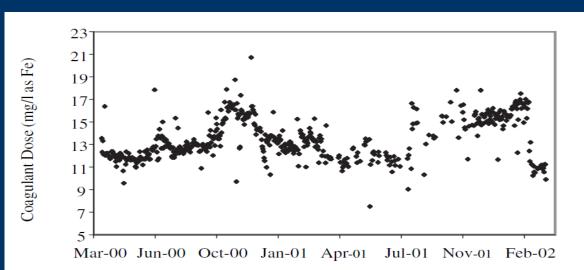
For different OM fractions

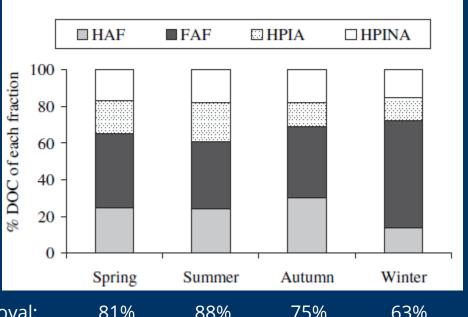
VARIATION

In time and source

TREATMENT

Overview of techniques



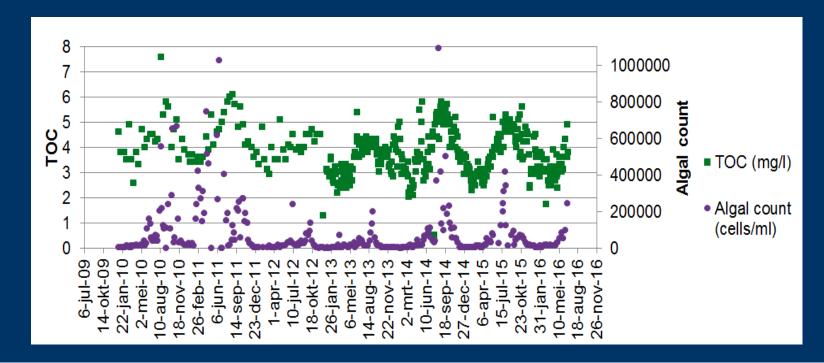


Variations

Seasonal changes

- Fractions (Jarvis et al., 2004), Charge density (Sharp et al., 2005)
- Operation of treatment plant

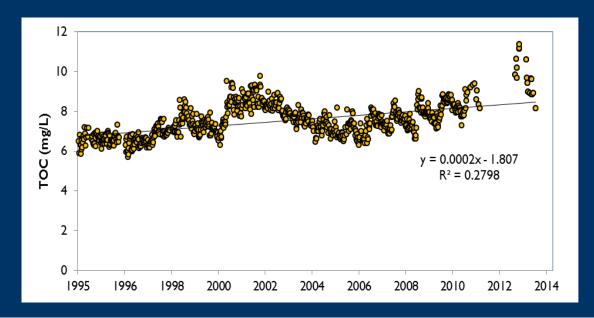
Jarvis et al., 2004 DOC removal: 81% 88% 75% 63%



Variations

Seasonal changes

- Allochtonous OM, Autochtonous OM
- From observer:



Variations

Long term trends

- 0.06-0.51 mg DOC/L/year in Northern Europe sites (Evans et al., 2005)
- Example 1, observer: lower quality water use by industry (high quality water scarcity)
- Example 2, observer:

Outline

CHARACTERISATION

Of OM

PROBLEMS

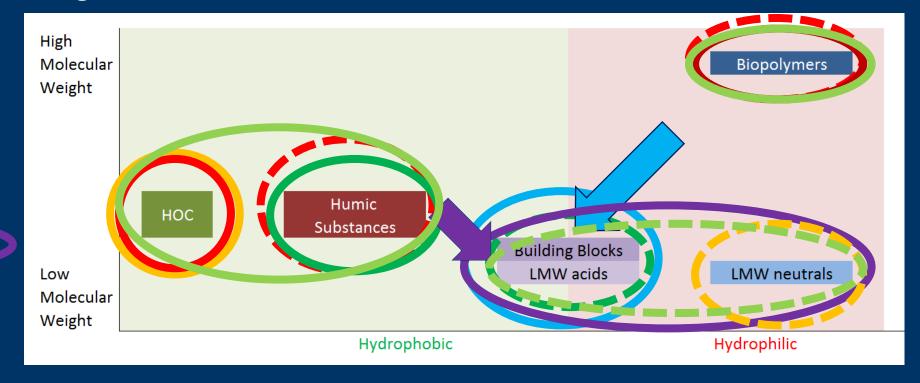
For different OM fractions

VARIATION

In time and source

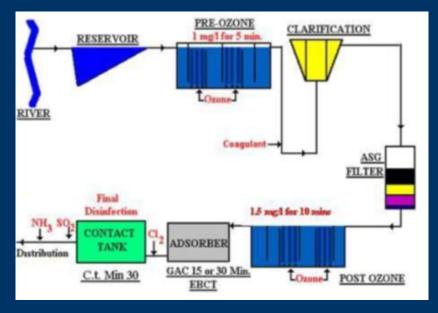
TREATMENT

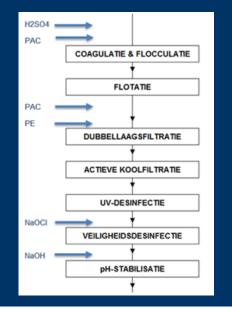
Overview of techniques

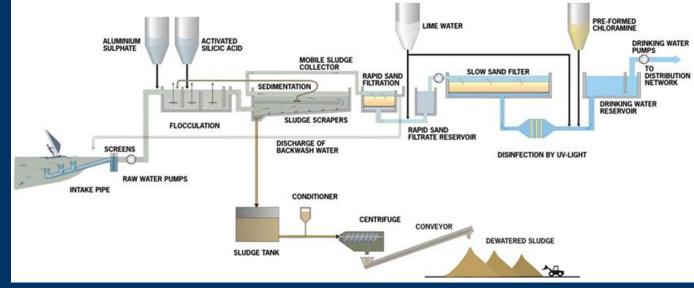


Steps with different OM targets

- Coagulation:
- Ion Exchange:
- Managed Aquifer Recharge:
- Ozonation / Advanced oxidation:
- Activated Carbon:
- Ultrafiltratio Nanofiltration







27

Observers: current approach

Observers: current approach

- All presented schemes: conventional coagulation
- OM removal mostly side effect
- More focus on optimisation for low DBPs formation

Observers: motivations for changing approach

- Change of raw water quality (micro contaminants, DOC)
- Increase of LMW OM due to added oxidation step
- Increase of capacity
- High OM concentration in treated water

Observers: research optimisation and alternative technologies

- Ion Exchange (e.g. SIX, MIEX)
- Activated Carbon (e.g. reactivation rate increase)
- Ozonation
- Membrane filtration (e.g. Nanofiltration and CeraMac)

Observers: concern for Waste Disposal

- Interest in lower dependence of chemicals
- DOC removal: new residuals
- Residual DOC: a valuable material
 - Pure, high dry matter content, hygienic conditions

Figure from humicacidmanufacture.wordpress.com/

Observers: knowledge gaps

- Chlorine minimisation: influence of DOC and other parameters
- Impact of residual DON on DBP
- Enhancement of biostability
- Cost effectivity for DOC minimisation

Conclusions

34

Conclusions

Observers:

- Interest in strategies for DOC removal for the near future
- Changing quality of water
- Reduction of DBPs
- Waste disposal

Conclusions

Incomplete knowledge:

- OM characterisation methods
- Impact of DOC and other parameters on DBP formation and biostability
- Available OM techniques and cost effectiveness

Regional data

37

Regional data

Data to include in the report

- Inflow / raw water source concentration of OM (variation range)
- Outflow concentration of OM (variation range)
- Measurement method OM (preference: DOC)
- Treatment schemes

Thank you!

