

Characterization of NOM by LC-OCD

Contents

- Natural Organic Matter (NOM)
- Methods of Measurement
- LC-OCD
 - History
 - Principles
- Application of LC-OCD
- Factors influencing measurements
- Conclusions

Normal Organic Matter (NOM)

- Complex mix of molecules with a large variation
- Origin is from breakdown of material of animals, plants and micro-organisms present in nature (but also of anthropogenic nature)
- Components consists mainly of carbon, hydrogen, oxygen, nitrogen and sulphur
- Size variates from small acids and aminoacids (100 200 amu) to humic/fulvic acids and aggregates (1000 – 10.000 amu) till even biopolymers (proteins and polysacharides) (till 2.000.000 amu)
- Components are aliphatic, aromatic, polar, non polair of stucture and may have a colour (yellow/brown)

NOM influences

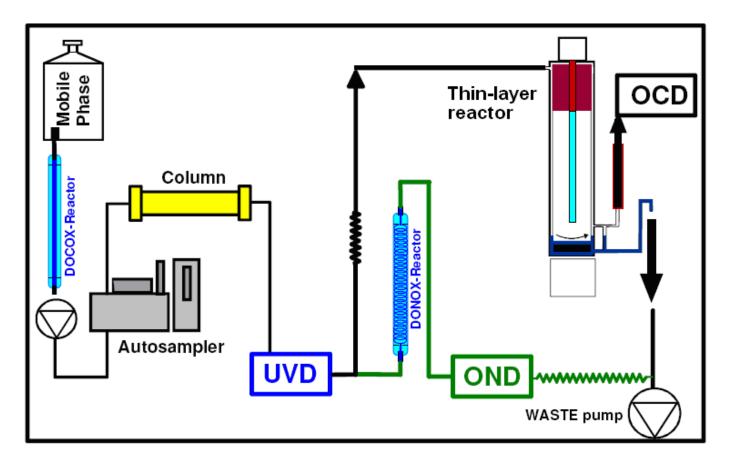
- Purification Proces
 - Advanced Oxydation
 - Membrane filtration
- Growth of bacteria in the distribution system (AOC)
- Corrosion

Method of Analysis

- TOC, DOC (after filtration on 0.45 um), UV 254 (double bonds)
- XAD-4 and XAD-8 fractionation for polar, non-polar and hydrophobic NOM (Leenheer)
- Fluorescence Excitation Emission Matrices (humus like and protein like NOM)
- GC-MS
- MaldiTof
- Size Exclusion Chromatography

Analysis Method LC-OCD

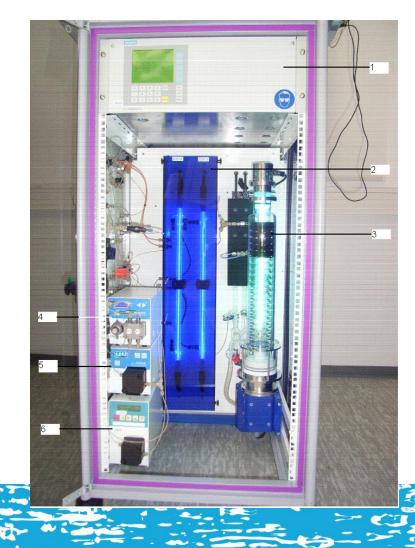
- Liquid Chromatography based on Size-Exclusion Chromatography (SEC)
- Detection: OCD (Organic Carbon Detector, continue measurement with high sensitivity), continue UV-absorption (aromatics) and continue OND (Organic NitrogenDetector)



3 Measurements:

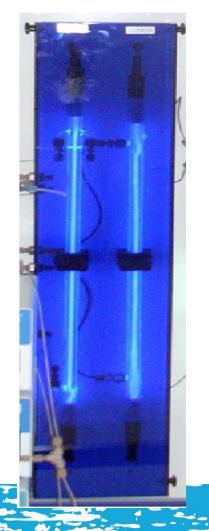
- Small amount directly to detectors bypassing the colum -> TOC
- Small amount online filtered over 1,2 um glassfibre filter also directly to detectors bypassing the column -> DOC
- 5 ml sample chromatographed on colum and the entering the detectors -> CDOC

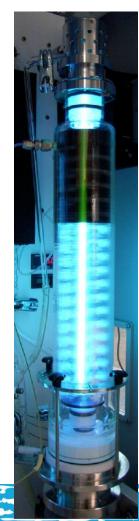
Column: GPC-kolom Toyopearl HW-50S, 30 µm (250 x 20) (hydroxylated methacrylic polymer)



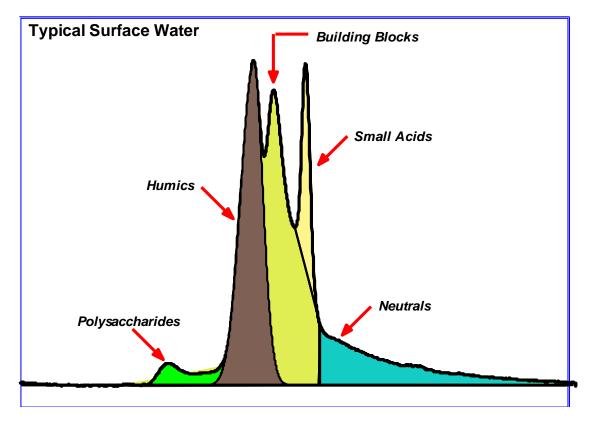
Precautions:

- Use special cleaned vials (available from HWL)
- Avoid fragrances (perfume, after shave) during sampling and handling




- 1. OCD-detector
- 2. DOCOX/DONOX
- 3. Thin layer reactor
- 4. Colums
- 5. UV-detector
- 6. OND-detector

- Reactor consists of 2 UV lamps
- DOCOX (left)
- Eluent
- Organic Substances -> CO₂
- DONOX (right)
- Sample
- Nitrogen -> NO₃



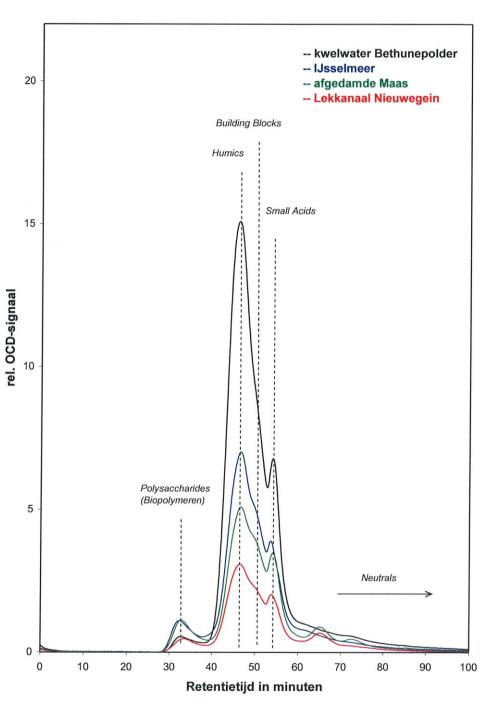
• Removal of Inorganic Carbon (acidification, purging)

•Oxidation of Organic Carbon and Ureum

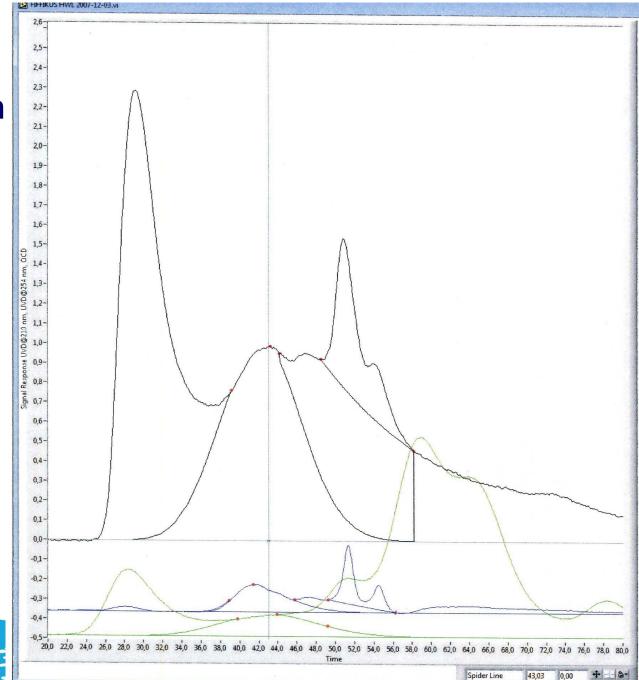
Chromatogram

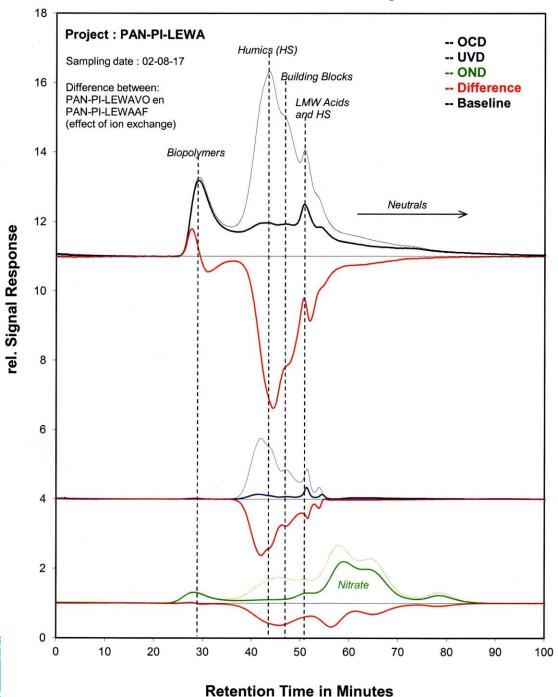
History

- 1969 Axt SEC-chromatography with thermal combustion C-detector
- 1986 Fuchs Gräntzel thin film detector with vacuum UV-detection
- 1991 Huber and Frimmel optimization of NOM analysis
- March 2006 HWL sign contract to obtain 7th NOM system from Doc Labor Karsruhe
- May 2006 system is placed and method validated
- August 2017 system is upgraded to work at least to 2020


Performance

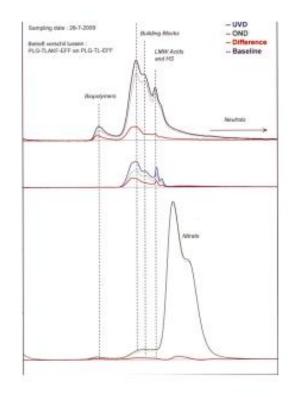
Performance	Demand	Result
Linearity	good	good
Robustness	good	good
Repeatability	-	< 10%
Reprodocubilily	< 25%	< 10%
Storage sample	-	8 days (refrigerated)
Reporting limit (fractions)	< 0,2 mg/l	0,03 - 0,15 mg C/l
Measurement range	_	< 12 mg/l


Typical Chromatograms



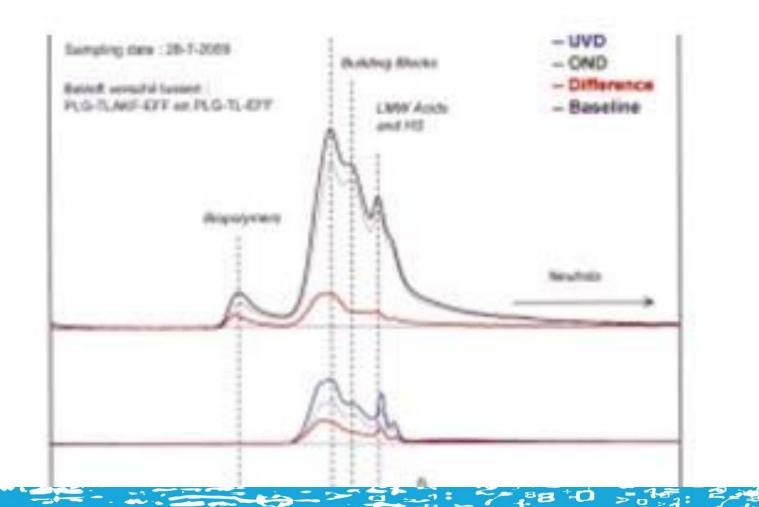
Typical Chromatograms

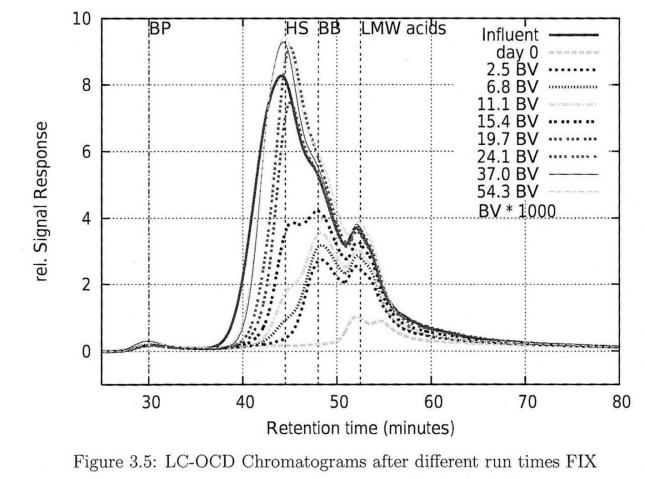
Presentation of difference Chromatograms



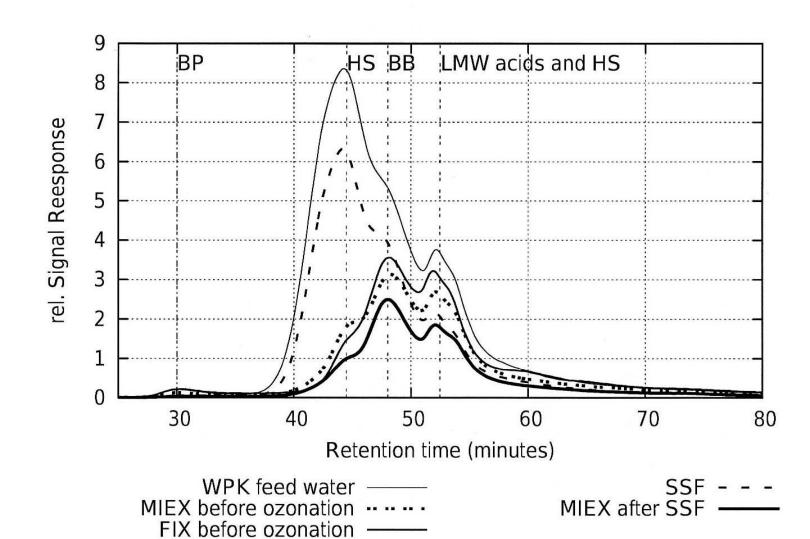
Typical Chromatogram UV-Peroxyde (1)

Verschilchromatogram





Typical Chromatogram UV-Peroxyde (2)



Typical Chromatograms

Restrictions

Rapportcode: 2017-104

Het Waterlaboratorium kan niet instaan voor de juistheid van gepresenteerde resultaten. Deze rapportage is geen vervanging van het formele analyserapport en geeft geen inzicht in eventuele disclaimers die betrekking hebben op het monster of analyseresultaten. Deze zijn op aanvraag beschikbaar.

Berekening zonder Humics!

Partition	anic Carbo	on (OC)		Chromatographic Fractionation of Organic Carbon (CDOC)										(UV@254 nm)		
	>>20.000	>20.000 ~1000 (see separate HS-Diagram) 300-500							<350							
TOC=DOC+POC DOC=CDOC+HOC					+		+				+ + 1		_			
Note: POC, hence TOC may be to		may be too	be too low		Bio- —	_	Humic	-1	- 1	I	Building	Neutrals	Acids	Inorg.	SUVA	
TOC	DOC	POC	HOC	CDOC	Polymers	DON	Subst.	DON	Aromaticity	Mol-Weight	Blocks			Colloid.		
total OC	dissolved	particul.	hydrophob.	hydrophil.		(Norg)	(HS)	(Norg)	(SUVA-HS)	(Mn)				SAC	(SAC/OC)	
ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-N	ppb-C	ppb-N	L/(mg*m)	g/mol	ppb-C	ppb-C	ppb-C	(m ⁻¹)	L/(mg*m)	
% TOC	% TOC	% TOC	% TOC	% TOC	% TOC	-	% TOC			8-9	% TOC	% TOC	% TOC	10-10	-	
2815	2674	142	236	2438	734	45	(n.n.)	n.n.		n.n.	(1090)	463	(151)	0,11	1,22	
100	95,0	5,0	8,4	86,6	26,1	it				12 -	38,7	16,4	5,3	-		
	TOC=DOC Note: POC TOC total OC ppb-C % TOC 2815	Approx. M TOC=DOC+POC DOC Note: POC, hence TOC TOC DOC total OC dissolved ppb-C ppb-C % TOC 2815 2674	Approx. Molecular WTOC=DOC+POCDOC=CDOC+HWNote: POC, hence TOC may be tooTOCDOCPOCdissolvedtotal OCdissolvedppb-Cppb-C% TOC% TOC28152674142	TOC=DOC+POC DOC=CDOC+HOC Note: POC, hence TOC may be too low TOC DOC POC HOC total OC dissolved particul. hydrophob. ppb-C ppb-C ppb-C ppb-C % TOC % TOC % TOC % TOC 2815 2674 142 236	Approx. Molecular Weights in g/mol: TOC=DOC+POC DOC=CDOC+HOC Note: POC, hence TOC may be too low TOC DOC POC HOC CDOC total OC dissolved particul. ppb-C ppb-C ppb-C % TOC % TOC % TOC 2815 2674 142 236	Approx. Molecular Weights in g/mol: >>20.000 TOC=DOC+POC DOC=CDOC+HOC Note: POC, hence TOC may be too low Hoc TOC DOC POC HOC CDOC total OC dissolved particul. hydrophob. hydrophill. Polymers % TOC 2815 2674 142 236 2438 734	Approx. Molecular Weights in g/mol: >>20.000 TOC=DOC+POC DOC=CDOC+HOC Note: POC, hence TOC may be too low Bio- TOC DOC POC HOC CDOC total OC dissolved particul. hydrophob. hydrophil. ppb-C ppb-C ppb-C % TOC % TOC % TOC % TOC % TOC - 2815 2674 142 236 2438 734 45	Approx. Molecular Weights in g/mol: >>20.000 ~1000 (s TOC=DOC+POC DOC=CDOC+HOC Bio- Humic Note: POC, hence TOC may be too low Bio- Humic TOC DOC POC HOC CDOC total OC dissolved particul. hydrophob. hydrophil. (Norg) (HS) ppb-C ppb-C ppb-C ppb-C % TOC % TOC % TOC 2815 2674 142 236 2438 734 45 n.n.	Approx. Molecular Weights in g/mol: TOC=DOC+POC DOC=CDOC+HOC Note: POC, hence TOC may be too low Bio- TOC DOC POC total OC dissolved particul. hydrophob. ppb-C ppb-C ppb-C % TOC % TOC % TOC % TOC % TOC % TOC 2815 2674 142 236	Approx. Molecular Weights in g/mol: >>20.000 ~1000 (see separate HS-Diag TOC=DOC+POC DOC POC HOC Note: POC, hence TOC may be too low Bio- Humic TOC DOC POC HOC total OC dissolved particul. hydrophob. hydrophil. ppb-C ppb-C ppb-C ppb-C % TOC % TOC % TOC % TOC % TOC 2815 2674 142 236 2438 734 45 n.n.	Approx. Molecular Weights in g/mol: >>20.000 ~1000 (see separate HS-Diagram) TOC=DOC+POC DOC=CDOC+HOC	Approx. Molecular Weights in g/mol: >>20.000 ~1000 (see separate HS-Diagram) 300-500 TOC=DOC+POC DOC=CDOC+HOC Bio- Humic Building Note: POC, hence TOC may be too low Bio- Humic Building TOC DOC POC HOC CDOC total OC dissolved particul. hydrophob. hydrophil. pb-C pb-C pb-C pb-C image: model with the second	Approx. Molecular Weights in g/mol: >>20.000 ~1000 (see separate HS-Diagram) 300-500 <350 TOC=DOC+POC DOC=CDOC+HOC Note: POC, hence TOC may be too low Image: CDOC Image: CDOC	Approx. Molecular Weights in g/mol: >>20.000 ~1000 (see separate HS-Diagram) 300-500 <350 <350 TOC=DOC+POC DOC=CDOC+HOC Molecular Weights in g/mol. >>20.000 ~1000 (see separate HS-Diagram) 300-500 <350	Approx. Molecular Weights in g/mol: >>20.000 ~1000 (see separate HS-Diagram) 300-500 <350	

Humic and Fulfic Acids

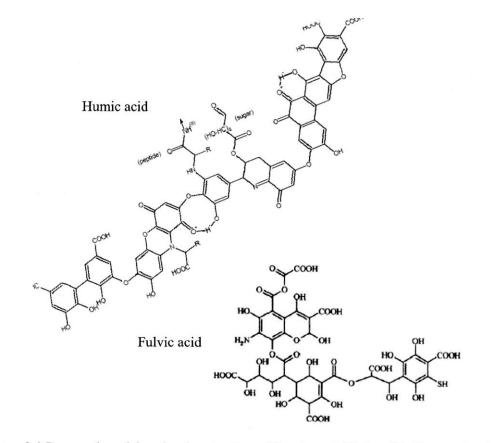
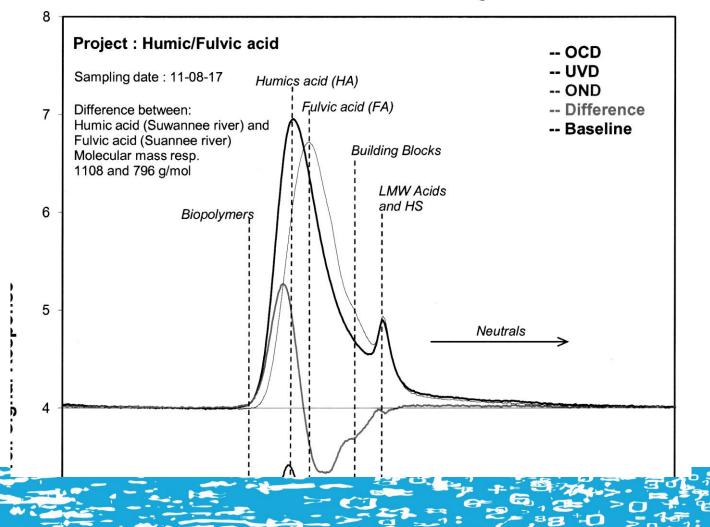
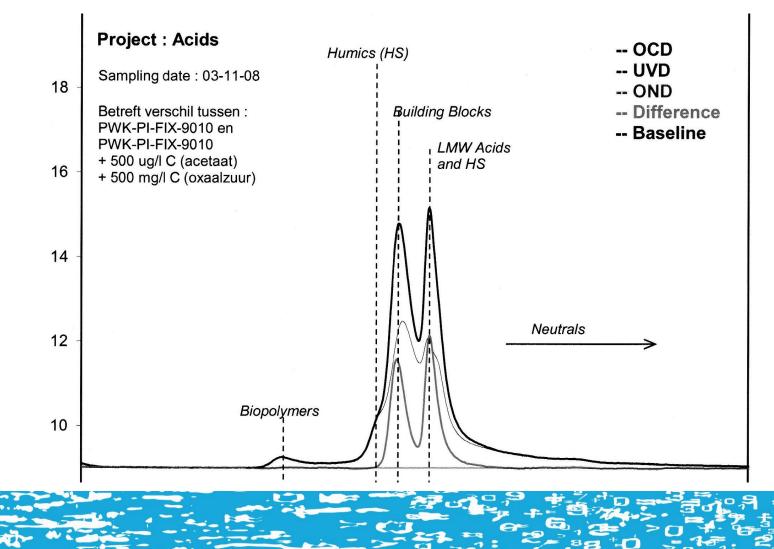


Figure 2.1 Proposed model molecular structure of humic and fulvic acids (Stevenson, 1982, Alvarez-Pueblaa et al., 2006).

Restrictions


- Particulate Organic Matter
- Hydrophobic Organic Matter
- Inorganic Colloids
- Apparent Molecular Weight Humics


Humic and Fulvic Acids

Presentation of difference Chromatograms

Acids are not always acids

Retention Time of Acids

- Formic Acid : 53 minutes (= LMW Acid Peak)
- Acetic Acid: 53 minutes (= LMW Acid Peak)
- Oxalic Acid: 47.5 minutes (= Building Blocks)
- Citronic Acid: 46 minutes (= Building Blocks)

Humics are not always humics

The peak

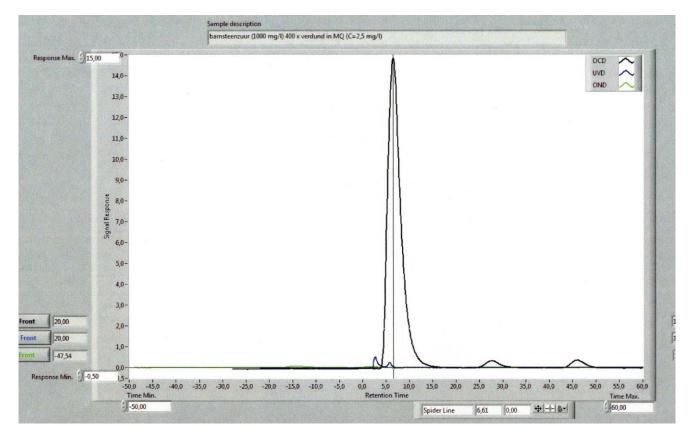
Humics are not always humics

Rapportcode: 2017-104

Het Waterlaboratorium kan niet instaan voor de juistheid van gepresenteerde resultaten. Deze rapportage is geen vervanging van het formele analyserapport en geeft geen inzicht in eventuele disclaimers die betrekking hebben op het monster of analyseresultaten. Deze zijn op aanvraag beschikbaar.

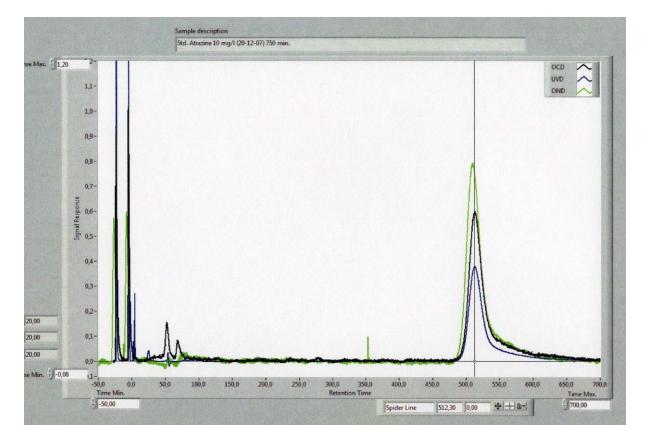
Project: PAN-PI-LEWA	: PAN-PI-LEWA Partitioning of Organic Carbon (OC)							Chromatographic Fractionation of Organic Carbon (CDOC)									
sampl.date: 9-8-2017		>>20.000									<u>(UV@254</u>)						
	TOC=DOC	+	•														
	Note: POC	, hence TOC	may be too	low	~	Bio- —	_	Humic	<u> </u>		1	Building	Neutrals	Acids	Inorg.	SUVA	
	TOC	DOC	POC	HOC	CDOC	Polymers	DON	Subst.	DON	Aromaticity	Mol-Weight	Blocks			Colloid.		
	total OC	dissolved	particul.	hydrophob.	hydrophil.		(Norg)	(HS)	(Norg)	(SUVA-HS)	(Mn)				SAC	(SAC/OC)	
	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-N	ppb-C	ppb-N	L/(mg*m)	g/mol	ppb-C	ppb-C	ppb-C	(m ⁻¹)	L/(mg*m)	
	% TOC	% TOC	% TOC	% TOC	% TOC	% TOC		% TOC	-	1024		% TOC	% TOC	% TOC	1992	-	
PAN-PI-LEWAAF	2824	2654	170	248	2405	764	50	770	30	0,89	695	(418)	453	\bigcirc	0.06	1,22	
1025341	100	94,0	6,0	8,8	85,2	27,1		27,3	17.24	·····	-	14.8	16.0	0,0	-		

Rapportcode: 2017-104


Het Waterlaboratorium kan niet instaan voor de juistheid van gepresenteerde resultaten. Deze rapportage is geen vervanging van het formele analyserapport en geeft geen inzicht in eventuele disclaimers die betrekking hebben op het monster of analyseresultaten. Deze zijn op aanvraag beschikbaar.

Berekening zonder Humics!

Proj	ect: PAN-PI-LEWA	Partitioning of Organic Carbon (OC)						Chromatographic Fractionation of Organic Carbon (CDOC)									
sam	pl.date: 9-8-2017	Approx. Molecular Weights in g/mol:					>>20.000	>20.000 ~1000 (see separate HS-Diagram) 300-500 <350 <									
		TOC=DOC	C+POC DOC	C=CDOC+H	oc		+	+				+	+	-			
		Note: POC	C, hence TOC	may be too	low	\sim	Bio- —	_	Humic			1	Building	Neutrals	Acids	Inorg.	SUVA
1		TOC	DOC	POC	HOC	CDOC	Polymers	DON	Subst.	DON	Aromaticity	Mol-Weight	Blocks			Colloid.	
		total OC	dissolved	particul.	hydrophob.	hydrophil.		(Norg)	(HS)	(Norg)	(SUVA-HS)	(Mn)				SAC	(SAC/OC)
		ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-N	ppb-C	ppb-N	L/(mg*m)	g/mol	ppb-C	ppb-C	ppb-C	(m ⁻¹)	L/(mg*m)
		% TOC	% TOC	% TOC	% TOC	% TOC	% TOC	-	% TOC		14		% TOC	% TOC	% TOC	300 -	
	PAN-PI-LEWAAF	2815	2674	142	236	2438	734	45	n.n.)	n.n.		n.n.	(1090)	463	(151)	0.11	1.22


Finally: It's not always you expect

Finally: It's not always you expect

Questions...

