Impact of DOC on biological stability in drinking water distribution systems

Emmanuelle Prest

November 6th, 2018
Mayflower Water Treatment Works, Plymouth
Drinking water distribution without residual disinfectant in the Netherlands

Historical background

• Years 1970: discovery of disinfection by-products and health effects

• Years 1990-2000: shift of main water disinfection step from chlorine to ozone and UV in NL distribution without maintaining residual disinfectant

• 2006: implementation of strict DBP regulations in the Netherlands: TTHM < 25 µg/L
Implications for drinking water distribution

How to limit bacterial growth during water distribution without residual disinfectant?

• Requires to produce biological stable water using extensive water treatment:

 ⇒ limit available nutrients for bacterial growth:
 - C source: part of DOC can be consumed by bacteria for growth
 - N source: e.g. NH4, NO3, N-bound organic compounds
 - P source: e.g. PO4, P-bound organic compounds

 ⇒ Limit release of particles in the distribution system

• Requires well-designed systems and good maintenance of distribution systems

 ⇒ avoid recontamination, long residence times, and temperature hot-spots
ClO$_2$ dosage: \sim0.01 mg/L at WTP effluent
Not maintained in distribution
PWN treatment plants and distribution areas
Characteristics of NOM in the 3 WTPs

Assimilable organic carbon (AOC) is a tiny fraction of TOC. This is the fraction that bacteria can use for growth.
Characteristics of NOM in the 3 WTPs

The 3 WTPs produce water with same TOC but - different NOM composition - different AOC concentration
Detection of priority areas

Highest ATP values in area supplied by WTP Andijk, especially in specific area

⇒ Confirms known problems:
- past customer complaints on turbid water
- need for regular flushing program
Microbial regrowth during water distribution

Effect ClO\textsubscript{2} dosage: biofilm detachment

Progressive regrowth in transport sections when disinfectant not available

Graph:
- **A** to **B**: transport pipe (800-900 mm, 20 km)
- **B** to **C**: transport pipe (800-900 mm, 20 km)
- **C** to **D**: transport pipe (500-700 mm, 10 km)
- **D** to **E**: distribution area (40-300 mm, 0.5 km)

Intact cells (cells/mL):
- **A**: 60000
- **B**: 20000
- **C**: 70000
- **D**: 70000
- **E**: 70000
- **F**: 70000

Legend:
- A: Treatment
- B: Reservoir
- C: Transport pipe
- D: Distribution area
- E: Reservoir
- F: Treatment

Text:
- Microbial regrowth during water distribution
- Effect ClO\textsubscript{2} dosage: biofilm detachment
- Progressive regrowth in transport sections when disinfectant not available
Nutrients availability during water distribution

Effect \(\text{ClO}_2 \) dosage: increase inavailable nutrients

Effect bacterial growth: consumption of nutrients

Clear link between available nutrients and bacterial growth
Sediments build up during water distribution

Not only bacterial growth in bulk water, but also build-up of sediment occur during water transport and distribution.
Sediments build up during water distribution

Not only bacterial growth in bulk water, but also build-up of sediment occur during water transport and distribution
Sediment composition in distribution system

Sediment composition (location E)

- asellus feces: 40-60%
- detritus: 50-80%
- other: 0-20%

sediments composed at 80-90% of organic material
Food chain in distribution systems

Dissolved nutrients (AOC)

Bacterial growth

Extra nutrients (particulate)

Sediment formation

Growth of small invertebrates

Growth of large invertebrates

Feces production, die-off, molts, etc.
conclusions

• Organic matter in drinking water have impact on bacterial growth in drinking water distribution system

• The type and composition of different NOM compounds is determining factor for growth

• The exact dissolved and particulate compounds playing a role in bacterial growth and sediment build-up are still unknown and unexplored.

• Dissolved nutrients initiate food chain, which results in production of particulate nutrients and further promote sediment build-up.
Impact of DOC on biological stability in drinking water distribution systems

Emmanuelle Prest

November 6th, 2018
Mayflower Water Treatment Works, Plymouth